

Biochemical blueprint of flavour, health and nutrition in cresses and sprouts

Lecture for the ISGA convention April 22, 2015, Rotterdam

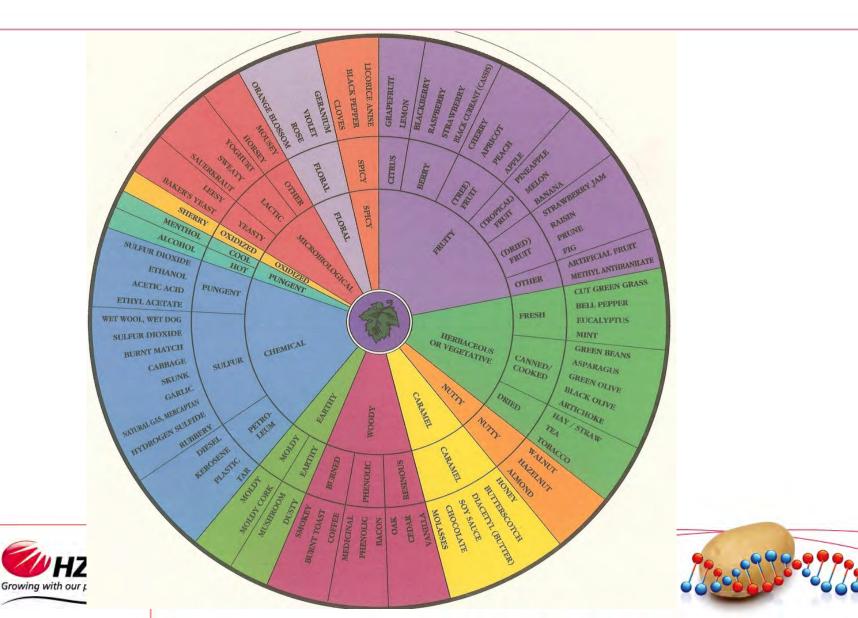
Dr. Hans van Doorn HZPC R&D Metslawier, The Netherlands

My agenda

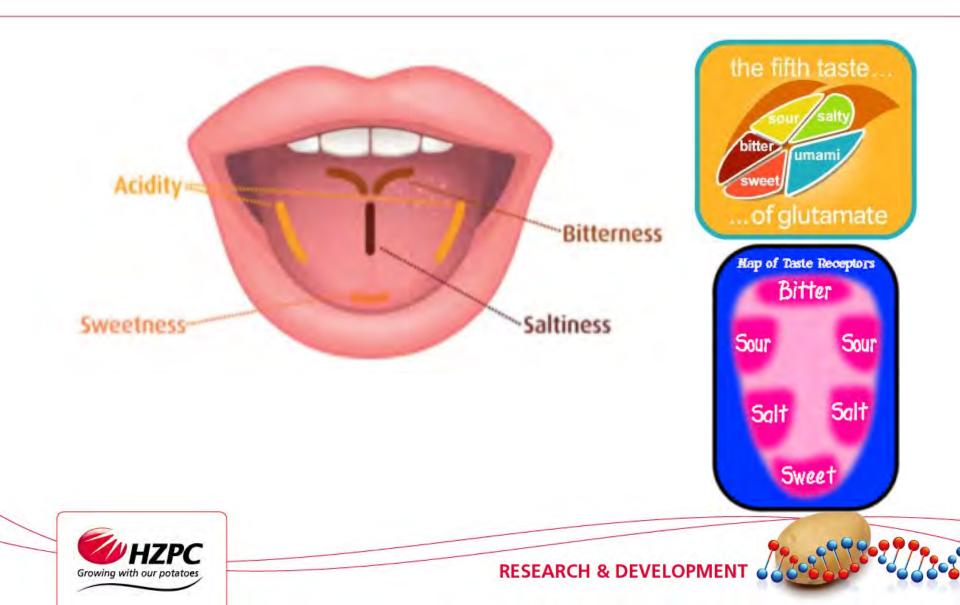
- The 5 senses
- The sensorial space
- Basic flavours
- Complex flavours and smells
- Cresses
- Architecture Aromatique = Architecture Biochemique

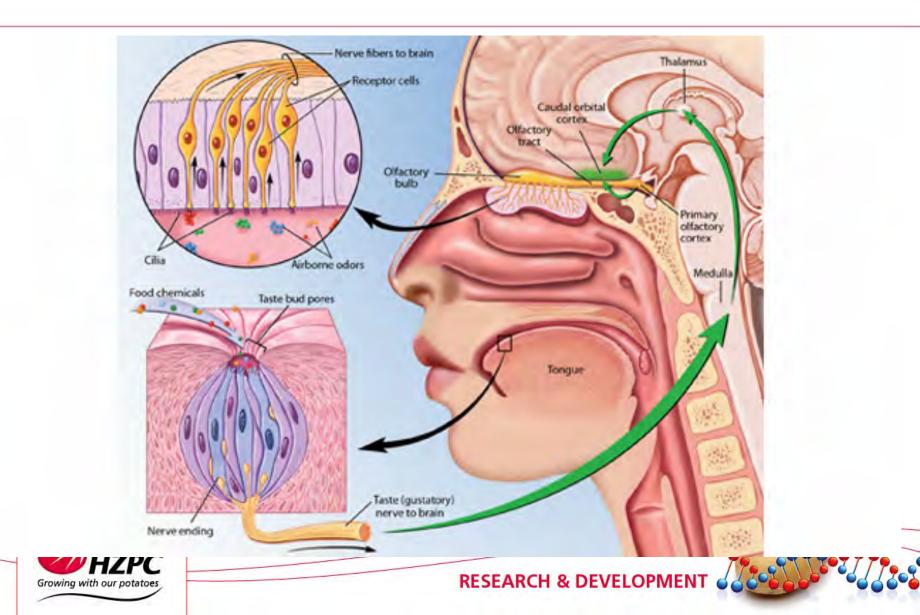
RESEARCH & DEVELOPMEN

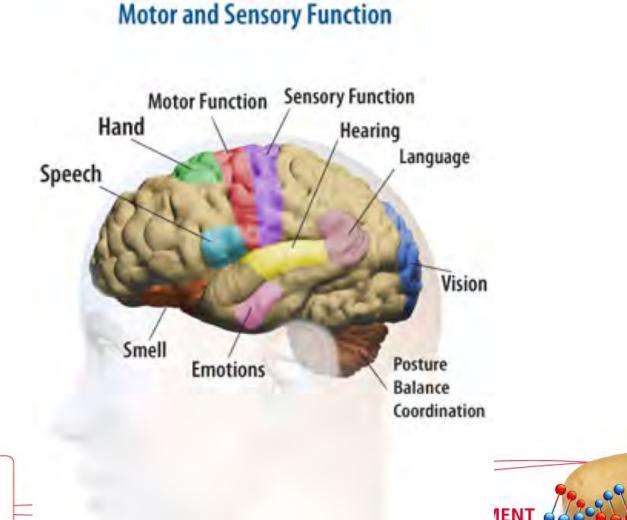
Health & nutrition



The 5 senses: our toolbox for survival

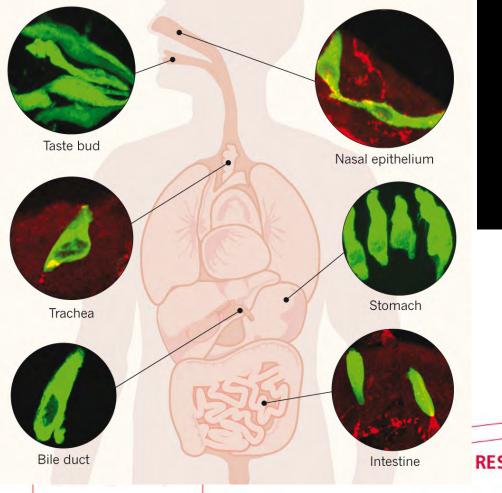



The sensorial space


The 5 basic flavours: palette of interactions

Sensing of aroma's and flavours: tongue vs. nose

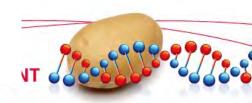
Aroma & Flavour = sensorial emotions: imprinted in the memory, new experiences



Taste perception: all along the digestive track! Malfunctioning in diabetes II patients

TASTE CIRCUITS


Cells with taste receptors are found throughout the body (shown in green)¹⁰. Along the digestive tract, their presence is probably related to food. But in bile ducts — that carry only secretions produced by the body — their purpose is more enigmatic.



Sensing has evolved in time.....

© Randy Glasbergen / glasbergen.com

"Hounds used to find things using their sense of smell, but now I use a search tool called Google Nose!"

The cresses and their aroma's & flavours

Cresses of Koppertcress in 'exotic' wording

Accla cress	Brocco cress	Mustard cress	Scarlet cress
Affilla cress	Chilli Cress	Persinette cress	Sechuan cress
Asanga cress	Daikon cress	Red Musterd	Shiso green
Atsina cress	Ghoa cress	Rock chives	Shiso Purple
Basil cress	Honny cress	Rucola cress	Tahoon cress
Blinq cress	Kikuna cress	Sakura cress	Garden cress
Borage cress	Limon cress	Salicornia cress	Wheat grass

Clustering of cresses according to flavour principles

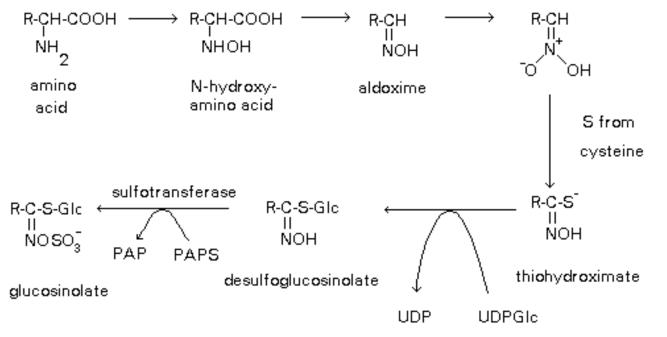
Accla cress	Brocco cress	Mustard cress	Scarlet cress
Affilla cress	Chilli Cress	Persinette cress	Sechuan cress
Asanga cress	Daikon cress	Red Musterd	Shiso green
Atsina cress	Ghoa cress	Rock chives	Shiso Purple
Basil cress	Honny cress	Rucola cress	Tahoon cress
Blinq cress	Kikuna cress	Sakura cress	Garden cress
Borage cress	Limon cress	Salicornia cress	Wheat grass

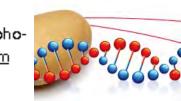
Cruciferous: glucosinolate containing Aromatic: terpenoid flavonoid containing Green: fatty acid oxidation related Basic flavours: salt, silt, acid Sulfur based: S-alkylcysteine-sulfoxide related

Architecture Aromatique

Glucosinolate containing cresses

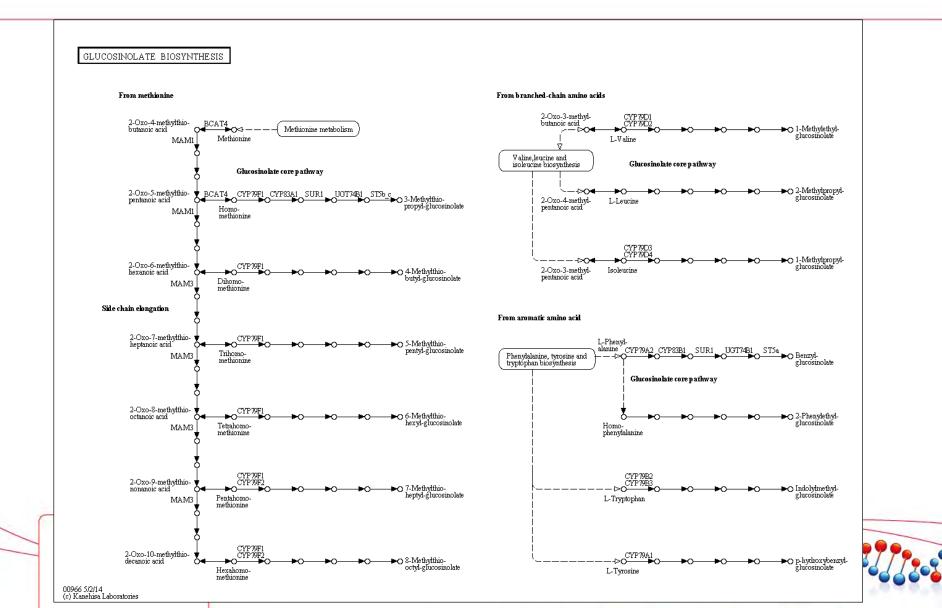
- Are all crucifers
- Belonging to the Brassica's
- Wide variation in flavour
 - Pungent
 - Hot
 - Nutty
 - Bitter
 - Astringent
 - Burning


Accla cress	Brocco cress	Mustard cress	Scarlet cress							
Affilla cress	Chilli Cress	Persinette cress	Sechuan cress							
Asanga cress	Daikon cress	Red Musterd	Shiso green							
Atsina cress	Ghoa cress	Rock chives	Shiso Purple							
Basil cress	Honny cress	Rucola cress	Tahoon cress							
Blinq cress	Kikuna cress	Sakura cress	Garden cress							
Borage cress	Limon cress	Salicornia cress	Wheat grass							
Cruciferous: g	lucosinolate co	ontaining								
Aromatic: terp	enoid flavonoi	d containing								
Green: fatty ad	cid oxidation re	elated								
Basic flavours	: salt, silt, acid									
Sulfur based: S	6-alkylcysteine	e-sulfoxide related								



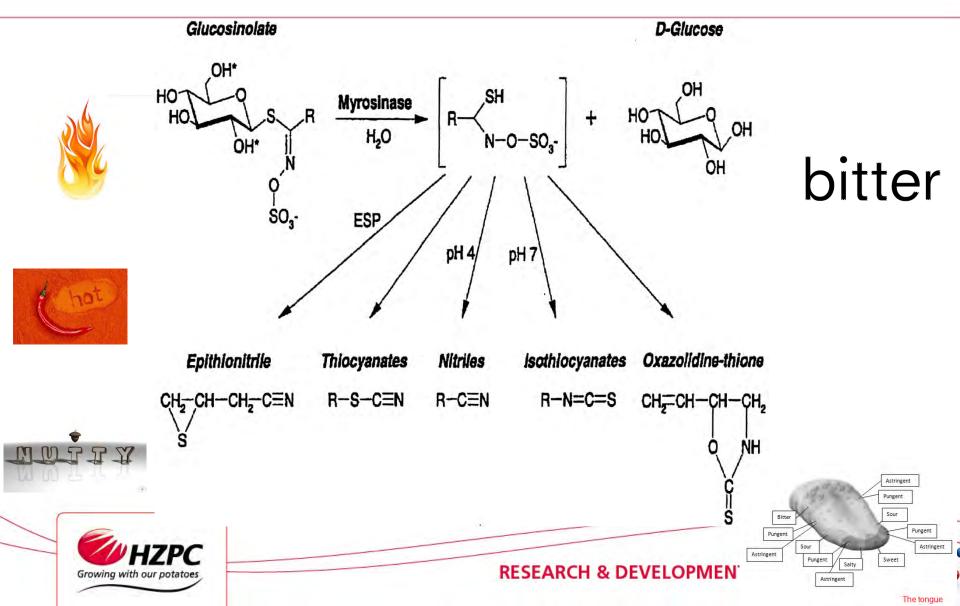
Glucosinolates: complex sulfur-containing sugars

Proposed pathway for the biosynthesis of glucosinolates


From : Glendening and Poulton 1990. Upon tissue disruption the enzyme myrosinase initiates the rapid degradation of glucosinolates to isothiocyanates, nitriles and thiocyanates which contribute to the distinctive flavor and odor characteristics of the family Brassicaceae.

Glendening TM, Poulton JE 1990 Partial purification and characterization of a 3'-phosphoadenosine 5'-phosphosulfate: desulfoglucosinolate sulfotransferase from cress (<u>Lepidium</u> <u>sativum</u>). Plant Physiol 94:811-818. (High activity of this enzyme in <u>Arabidopsis</u>).

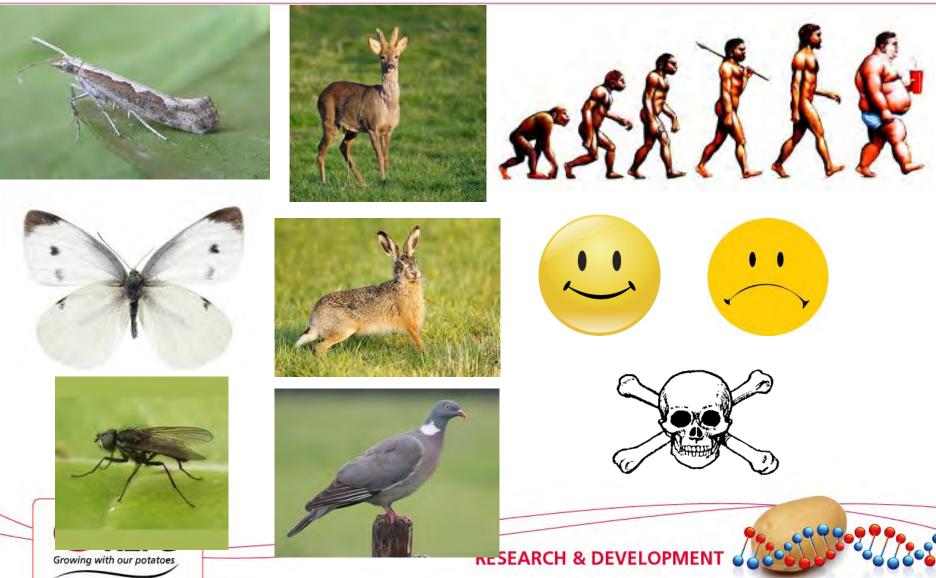
Glucosinolates: complex & differentiated flavours in crucifers


Glucosinolates: tailored chemistry for attraction and repellence

Amino acid precurs	sor Glucosinola	te structure Amino aci	d chain elongation	Amino acid precursor	Glucosinolate structure	
Methionine	Methylthioalkyl	CH3-S-CH2-CH2-[CH2] n-GSL	n = 1 · 8			CH2-GSL
	Methylsulphinylalkyl	CH3-SO-CH2-CH2-[CH2] n-GSL	n = 1 - 9	Tyrosine	p-Hydroxybenzyl	
	Methylsulphonylalkyl	CH3-S02-CH2-CH2-ICH21n-GSL	n = 1, 2, 6		OH	CH2-GSL
	4-Methylsulphinyl-3-bute	enyl CH ₃ -SO-CH=CH-ICH ₂] ₂ -GSL		Tryprophan	3-IndolyImethyl	
	Alkenyl	CH2=CH-ICH2In-GSL	n = 1, 2, 3			он н
	2-Hydroxy-3-butenyl	сн₂=сн−сн−сн₂−GsL он			4 Hydroxy 3 indolylmethyl	CH2-GSL
	2-Hydroxy-4-pentenyl	сн₂=сн−сн₂−сн−сн₂−GsL Он				CH2-GSL
	Hydroxalkyl	СН ₂ —СН ₂ —[СН ₂] _n —GSL ОН	n = 1, 2, 3		1-Methoxy-3-indolylmethyl	N OCH3
	Benzoyloxyalkyl	C-O-CH ₂ -CH ₂ -ICH ₂] _n -GSI	_ n ≕ 1 · 4		4 Methoxy-3-indolylmethyl	OCH3 CH2-GSL
Valine			n = 0 · 2	ò		
Isoleucine		CH ₃ -CH ₂ -CH-(CH ₂) _n -GSL CH ₃	n = 0, 1		SIA .	
Phenylalanine	Phenylalkyl	CH2-ICH2In-GSL	$\ddot{n} = 0 - 4$	R	' I ma	120000000000000000000000000000000000000
		\checkmark		No.	& Group Triangulan	

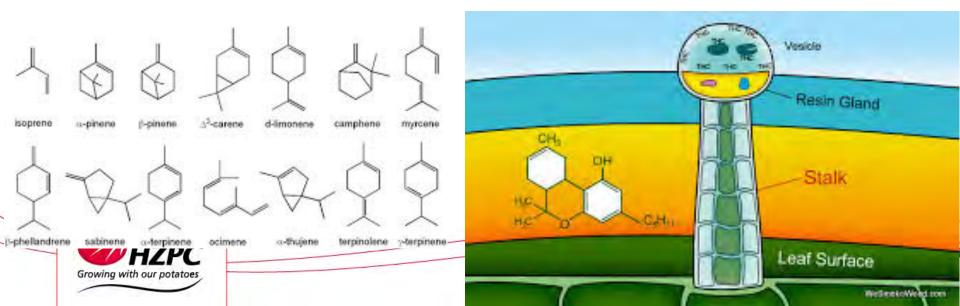
Glucosinolates: precursors for flavour and aroma in cresses

·-	Structure of R-groups	Śriviać narte	. ND.		
L	CR12CH-CH1-	Sinigra		<u>]néois-3-vinoihvidiucosinoihies:</u> R ₁ =8 ₁ ±#	(Jucobrasticia
	CH2=CH+CH2+CH2+	Glaconopin Diversionation	24	CMan Bina OCHA ; Ran H	Neoglucobressich
L	СH ₂ ±CH-CH ₂ -CH ₃ -CH ₂ - ОН	Glucoðressicentpin	26	я, » н ; я, » см	4-Hydroxygfocobress/sin
L	СК2=СН-С ~СВ4-	Produktin	2.7	R ₁ ≈ ₁ ⊨ H ; R ₄ = OCH3	4-Matheryglucobrassicin
\$	H H CHrsCH-C wCHr	Epiprogeliria	28	CH ₂	Hethylpiucosinolale
5	он он он он снуснску-с-ску-	tabatoriation	23	CH2-CH2	2-Rydroxy-2-methyl- pityyyigiucaxinaisie
в	н ск±.80-СН ₂ -СН ₂ -СН ₂ -	Glevojherin	30	C-c-ch-	Epfginenbraberin « Glucosibarin
1	сн _а -SD-CK ₂ -CK ₂ -CH ₂ -CH ₂ -CH ₂ -	Glucorophanin	31	Q. cH1~	2-Mydroxybenty8- geucosinoloje
2	CH3-SD-CH2-CH4+CH4+CH4-CH2-	Glucoslysser	32	Q-en-	2-Anemnopytabosyl-
¢	CH2-SO-CH=CH+CH2-CH2-	Giveorephonin			ozybaczylółucosiacista
4	CH ₉ -SO ₈ -CH ₂ -CH ₂ -CH ₂ -	Glucocheiralla		HQ(CH,)	
Ş	()-ai,	GlucotropacoBit		NO 08	
7	Ö-cH4~CH3~	Glucenarturläin	33	Сн ₂ •\$0-Сн∘Сн-Сн ₂ -Сн ₂ ⊷ Равоб′ог нд: Сн ₂ С, <u>↓</u> ОСн,	8΄.δίπερογίομε¢ιερησοία (R ₂ =H ερά R,σδίοάρόγί)
8		Głucobarbezin		ų.	
0	но- () - сн ₂	Sinalow		_ 9# ¥	•
1	 Сн	Giucolimentale	35	C-c+ CH-	8∿tseteruioyi-gludosiberin (R ₂ =H and R,etroferuioyi)
7	снуа (11,0-{{_}}-сн₂—	GlucopyAcietta		Reandfor He:	
				Ģ	


Enzymatic release of flavours and aroma's from glucosinolates

Specialists Love it

Generalists Avoid it


Consumers (Dis)like it

Terpenes as flavour makers in many herbs and spices

- Trichomes as flavour bombs on leaf surface
- Widespread biochemistry over species
- Well-recognized aroma's and flavours
- Pretty & positive
- Low odour threshold
- Attractants and repellants

Accla cress	Brocco cress	Mustard cress	Scarlet cress					
Affilla cress	Chilli Cress	Persinette cress	Sechuan cress					
Asanga cress	Daikon cress	Red Musterd	Shiso green					
Atsina cress	Ghoa cress	Rock chives	Shiso Purple					
Basil cress	Honny cress	Rucola cress	Tahoon cress					
Blinq cress	Kikuna cress	Sakura cress	Garden cress					
Borage cress	Limon cress	Salicornia cress	Wheat grass					
Cruciferous: g	lucosinolate co	ontaining						
Aromatic: terp	enoid flavonoi	d containing						
Green: fatty ad	cid oxidation re	elated						
Basic flavours	: salt, silt, acid							
Sulfur based: S	6-alkylcysteine	e-sulfoxide related						

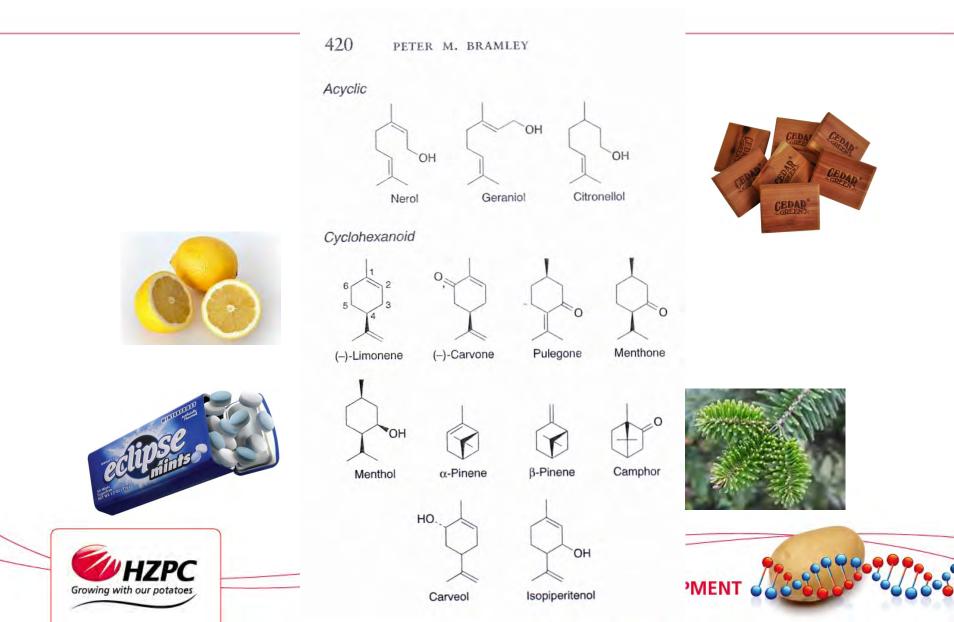
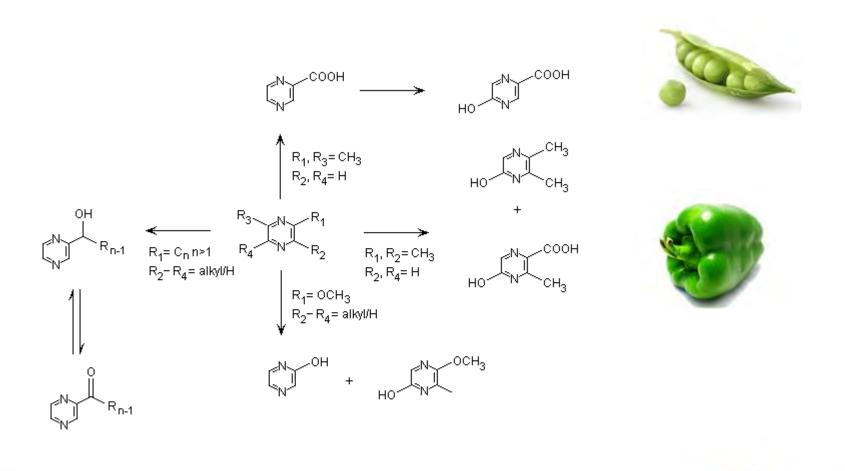
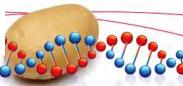
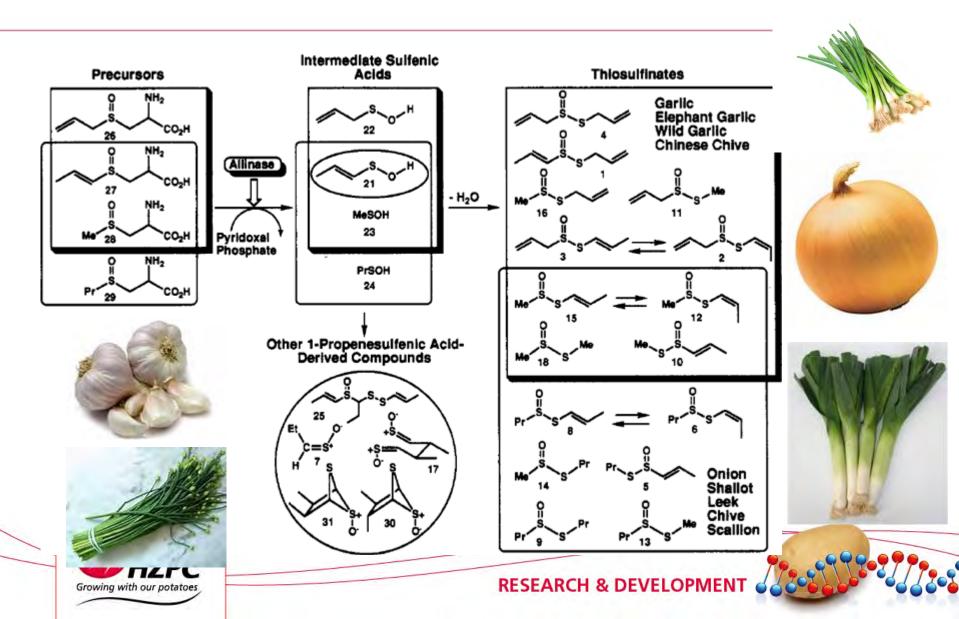
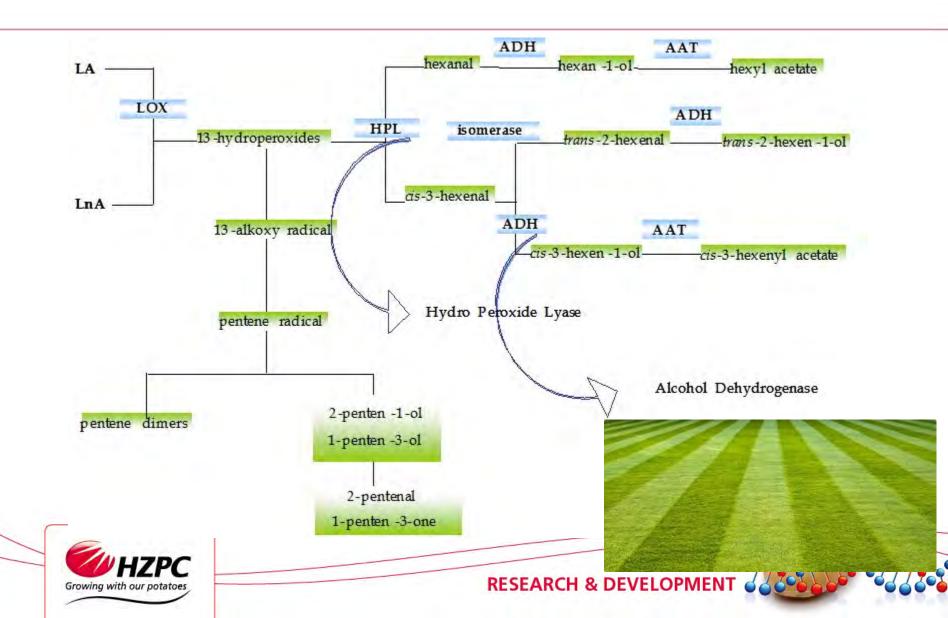

Biodiversity of terpenes in plant species

 Table 1
 A heat map of the most abundant foliar terpenes in all species of Myrtaceae


Tribe	Genuses	Samples	E-hex-2-enal	methyl cinnamate	geraniol	geranial	geranyl acetate	citronellol	citronellal	neral	isoamyl isovalerate	linalool	E-p-ocimene	β- myrcene	o-pinene	trans-pinocarveol	pinocarvone	ß-pinene	myrtenal	methyl myrtenate	limonene	caryone	1,8-cineole	a-terpineol	a-terpinyl acetate	cryptone	terpinolene
Carbocation			0	0	1	1	1	1	1	1	1	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	4
P450	_		+	+	1.5	+			+		+			-	-	1	+		+		2	+	-1-	~		+	-
Xanthostemoneae	2	7 -		4	÷ 4								12.5		25,0 -					1.1		- 3		-			
Melaleuceae	3	404 -		0.5	- 1	0.9	0.0	0.2	0.3	0.5		4.5	0.2	0.2	37.3	3.5	0.0	4.9	0.6	0.2	9.2 -	-0	58.9	6.7	0.2 -	- 1	2.0
Syncarpieae	1	4 -												6.1	120.0	-								-	-		-
Eucalypteae	3	797 -		0.1	0.2	0.3	0.4	0.1	0.3 -		0.4	0.2	0.3	0,1	37.5	2.9	0.3	3.7	0.1		3.2	0.3	50.2	3.3	0.4	0.6	0.1
Leptospermeaea	4	77 -		1.3	1.3	0.6	1.5 -	11	0.2	0.3 -		1.3	0.6	0.6	40.3	0.3 -		10.9	1.3 -		3.2 -		15,6	0.6 -	-		
Chamelaucieae	5	13 -		-					14.3 -			7.1			92.9	3.6 -			1	21.4	21.4 -	10	35.7 -	-			
Lindsayomyrteae	1	1 -	2.5	-	-						- 3		25.0	1						(-)				-			2
Myrteae	35	355	1.8	11	0.7	0.6 -			- 1	0.6 -		2,6	1.4	2.0	24.8	0.6 -		5.2	0.1	. 1	9.0	0.1	9.8	1.7	0.6 -		0,4
Kanicae	5	12 -		÷.,	3.10		i i							15.4	76.9 -			15.4 -	2		23.1 -						7.7 -
Tristanieae	2	2 -		-	- C - 3		6		i a	-		- 3	-		75.0	-								-	-		-
Backhousieae	1	3 -			-	33.3 -			33.3	16.7 -			9 y											-		1	-
Syzygieae	4	15 -		21	6.7		11	0.8	. 1	3.3 -	1	1.7		- 1	15.0 -	1		10.0 -	1	and a			÷ (]	7.5 -	1		-
Metrosidereae	-1	1 -								1.1									1								-


Terpenes: very diverse, exotic in perception


Pyrazins: the most potent odours



Alkylsulfoxides: the allium flavour profile

'Green' chemistry: fresh flavours from fatty acids

Architecture Aromatique = Architecture Biochemique

- Flavours & aroma's have a complex blueprint:
 - Often long biosynthesis routes
 - Many enzymatic steps involved
 - Release often upon disruption or damaging of tissues
 - Liberation very often by an enzymatic step
 - Multicomponent mixtures in various compositions
 - Diversity has a genetic basis and can be selected and bred for
 - Genomics of flavour & aroma's in cresses and sprouts is (still) in an early stage of development

Health & nutrition of cresses

- Not addressed in this presentation, however....
- Cresses and sprouts have clear potential
- Most component groups discussed are active
- Health aspects of cresses in lecture of Prof. Roel Vonk on 2nd symposium day

Thanks for your attention

The HZPC companies

The HZPC companies

